ORIOLO GIANPAOLO
(programma)
1. Giochi in forma normale. equilibri di Nash. Pareto ottimalit. strategie debolmente e strettamente dominanti. Strategie conservative. Payoff e preordini totali. 2. Un' applicazione delle strategie dominanti: i meccanismi di asta. Aste di primo prezzo e aste secondo prezzo (o di Vickrey). Un'applicazione degli equilibri di Nash: la legislazione di incidente. 3. Giochi antagonistici e a somma zero. Punti di sella ed equilibri di Nash per giochi a somma zero. Giochi strettamente competitivi. 4. Estensione in strategia mista di un gioco antagonistico. L'esistenza di un equilibrio nella strategia mista per i giochi aantagonistico e valore del gioco. Il teorema di von Neumann. Bluff, underbid e poker di Kuhn. 5. i giochi cooperativi. Nucleo di un gioco. Il teorema di Bondareva-Shapley. I mercati con utilit trasferibile. Giochi semplici e valore di Shapley. 6. Giochi cooperativi con l'utilit non trasferibile. Il problema dell'house allocation. Il problema dello stable marriage. 7. Albero ricoprente di peso minimo: teoria e algoritmi esatti. Alberi di Steiner: teoria ed algoritmi risolutivi esatti ed approssimati. Algoritmo primale duale e meccanismi di cost sharing. Giochi con alberi di Steiner. 8. Facility location: teoria ed algoritmi risolutivi esatti ed approssimati.. doppio schemi primordiale. Algoritmo primale duale e meccanismi di cost sharing. Facility location games. 9. Routing and congestion games. Il paradosso Braess. Il prezzo dell'anarchia.
 1. An introduction to Game Theory. Martin J. Osborne; Oxford University press. 2. Algorithmic Game Theory. Edited by Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani; Cambridge University Press. 3. Approximation Algorithms.ÊV.V. Vazirani; Springer. 4. Lecture Notes
|