|
Fruisce da
|
(programma)
Richiami ai metodi base di ML. Metodi Supervised vs. Unsupervised. Paradigmi di ML, Metodi di addestramento. Machine Learning Metrics and Evaluation. Introduzione alla modellazione dei documenti per il Web: dall’Information Retrieval al Natural Language Processing. Modelli di Linguaggio. Processi Markoviani. Modelli Generativi: HMM. Use Case: Probabilistic POS tagging PAC Learnability. Perceptrons. SVM. Hard Margin. Soft margin SVM. Kernel polinomiali. Sequence Kernels. Kernel for NLP. Tree Kernels. Semantic Tree kernels Deep Learning. Introduzione e Background. Deep NNs: tasks and Training. Convolutional Neural Networks. Recurrent Neural Networks. Deep Learning Software Development. NN in Python. Language Modeling con modelli neurali. DL Temi avanzati: attention; encoding-decoding; adversarial NNs; transformers. Web Search basics: Overview del processo di IR. Crawling. Spam & Ads in Web search. Web Search & Link Analysis. Rango e Rilevanza: PageRank. HITS. Web e Semantica Lessicale: Latent Semanti Analysis e apprendimento lessicale negli scenari Web. Opinion Mining e Sentiment Analysis: task, risorse e metodologie principali Advanced Statistical NLP for Question Answering (dal NERC e SRL al QA) Advanced Machine Learning for the Web: Learning to Rank, Recommending systems
 Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008. Consultabile on-line Roberto Basili, Alessandro Moschitti, Text Categorization: from Information Retrieval to Support Vector Learning, ARACNE Editore, 2005.•Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT press, 2016. Note del docente e articoli scientifici distribuite durante il corso.
|