| SISTEMI E COMPONENTI PER LA CONVERSIONE DELL'ENERGIA DA FONTI RINNOVABILI
(obiettivi)
OBIETTIVI FORMATIVI: Il corso fornisce contenuti avanzati per la progettazione degli impianti per la conversione dell'energia da fonti rinnovabili, in particolare impianti a biomasse, turbine eoliche, impianti ibridi basati su storage per l'integrazione di fotovoltaico ed eolico, impianti geotermici, impianti idroelettrici. Una volta introdotto lo scenario, si approfondiscono gli aspetti fenomenologici delle varie tecnologie, illustrando i criteri per la progettazione insieme alla valutazione dei principali parametri economici, di prestazione energetica e ambientale. CONOSCENZA E CAPACITÀ DI COMPRENSIONE: Lo studente sarà in grado di comprendere le questioni progettuali fondamentali degli impianti per la conversione dell'energia da fonti rinnovabili, e in particolare il legame tra la disponibilità della fonte e la particolare realizzazione progettuale per tutte le fonti di interesse principale (biomasse, eolico, geotermico, idroelettrico). Saranno anche illustrati i principi di funzionamento e progettuale delle principali tecnologie di stoccaggio dell'energia. CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE: Le conoscenze sviluppate aiuteranno lo studente sia nella progettazione di impianti che nella valutazione dei trade-off economico-ambientali, in tutti i casi di interesse (dalla scala del kW fino a quella del MW), e riguardo le principali fonti (biomasse, eolico ,geotermico, idroelettrico), ma anche in presenza di fonti multiple e/o di tecnologie di storage basate su accumulo elettrochimico o sulla produzione/utilizzo di idrogeno mediante elettrolizzatore e fuel cell. L'esercitazione progettuale, condotta in gruppi da due studenti, consentiranno di confrontarsi con aspetti progettuali molto vicini a quelli reali, difendendo le proprie ipotesi e risultati rispetto a quanto ottenibili con le best available technologies in termini di efficienza, costi e impatto ambientale. AUTONOMIA DI GIUDIZIO: Lo studente dovrà dimostrare la propria consapevolezza critica rispetto a tutti i numerosi aspetti di natura fenomenologica, economica e ambientale alla base della progettazione degli impianti per la conversione da fonti rinnovabili. Nella illustrazione della prova progettuale lo studente potrà dare prova delle proprie capacità critiche rispetto alla conduzione completa di un elaborato progettuale a partire da ipotesi formulate nell'assignment.
|
|
Codice
|
8038934 |
|
Lingua
|
ITA |
|
Tipo di attestato
|
Attestato di profitto |
|
Crediti
|
6
|
|
Settore scientifico disciplinare
|
ING-IND/08
|
|
Ore Aula
|
60
|
|
Ore Studio
|
-
|
|
Attività formativa
|
Attività formative caratterizzanti
|
Canale Unico
|
Docente
|
CORDINER STEFANO
(programma)
• Fonti energetiche rinnovabili: quadro generale; contesto globale, europeo e nazionale; bilanci energetici ed obiettivi generali di sviluppo. Generazione e cogenerazione distribuita, smart-grid, fondamenti di energy management. • Energia dalle biomasse: disponibilità della fonte, proprietà delle biomasse, proximate e ultimate analysis, processi di pretrattamento, riferimenti normativi. Processi di conversione termochimica: gassificazione a letto fisso e fluido; combustione; pirolisi. Cenni all’utilizzo di modelli semplificati e CFD per la rappresentazione di processi termochimici. Processi biochimici: biodigestione anaerobica, andamento produzione e temperatura, tempi di residenza. Tecnologie di produzione: impianti basati su turbine a vapore, a fluido organico, a gas e motori a combustione interna. Valutazione delle prestazioni di impianti alimentati con biomasse. • Energia eolica: disponibilità della fonte, distribuzioni statistiche di velocità del vento, producibilità potenziale. Principi di funzionamento di aeromotori eolici, teoria di Betz teoria induzione vorticosa, effetto numero di pale finito, Blade Element Method. Curve di carico di turbine eoliche, controllo degli aeromotori, curve di potenza. Fondamenti di progettazione di impianti eolici. Teoria del siting, e descrizione di esempi progettuali. • Energia geotermica ad alta e bassa entalpia: Principi di funzionamento di impianti per la conversione dell’energia geotermica, cicli ORC, recuperi termici a bassa temperatura • Energia idroelettrica: disponibilità della fonte, macchine idrauliche ed impianti idraulici, scambio di energia tra fluido e girante in funzione delle specifiche di progetto; mini e micro idroelettrico; energia idroelettrica da onde e maree. • Sistemi ibridi con storage elettrochimico e basato su idrogeno per l’integrazione delle fonti rinnovabili. Valutazione delle prestazioni in termini di efficienza, potenziale di integrazione delle fonti, emissioni di CO2. Descrizione criteri di dimensionamento di sistemi ibridi complessi.
 P. Basu, Biomass Gasification and Pyrolysis. Elsevier R. Pallabazzer, Sistemi di Conversione Eolica (Hoepli) T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook (Wiley) E. Hau, Wind Turbines (Springer) J.F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained (Wiley) R. Gasch, J. Twele, Wind Power Plants (Springer) Austin Hughes and Bill Drury. Electric Motors and Drives (Elsevier) Course powerpoint slides
|
|
Date di inizio e termine delle attività didattiche
|
- |
|
Modalità di erogazione
|
Tradizionale
|
|
Modalità di frequenza
|
Non obbligatoria
|
|
Metodi di valutazione
|
Prova orale
Valutazione di un progetto
|
|
Docente
|
MULONE VINCENZO
(programma)
Fonti energetiche rinnovabili: quadro generale; contesto globale, europeo e nazionale; bilanci energetici ed obiettivi generali di sviluppo. Generazione e cogenerazione distribuita, smart-grid, fondamenti di energy management. • Energia dalle biomasse: disponibilità della fonte, proprietà delle biomasse, proximate e ultimate analysis, processi di pretrattamento, riferimenti normativi. Processi di conversione termochimica: gassificazione a letto fisso e fluido; combustione; pirolisi. Cenni all’utilizzo di modelli semplificati e CFD per la rappresentazione di processi termochimici. Processi biochimici: biodigestione anaerobica, andamento produzione e temperatura, tempi di residenza. Tecnologie di produzione: impianti basati su turbine a vapore, a fluido organico, a gas e motori a combustione interna. Valutazione delle prestazioni di impianti alimentati con biomasse. • Energia eolica: disponibilità della fonte, distribuzioni statistiche di velocità del vento, producibilità potenziale. Principi di funzionamento di aeromotori eolici, teoria di Betz teoria induzione vorticosa, effetto numero di pale finito, Blade Element Method. Curve di carico di turbine eoliche, controllo degli aeromotori, curve di potenza. Fondamenti di progettazione di impianti eolici. Teoria del siting, e descrizione di esempi progettuali. • Energia geotermica ad alta e bassa entalpia: Principi di funzionamento di impianti per la conversione dell’energia geotermica, cicli ORC, recuperi termici a bassa temperatura • Energia idroelettrica: disponibilità della fonte, macchine idrauliche ed impianti idraulici, scambio di energia tra fluido e girante in funzione delle specifiche di progetto; mini e micro idroelettrico; energia idroelettrica da onde e maree. • Sistemi ibridi con storage elettrochimico e basato su idrogeno per l’integrazione delle fonti rinnovabili. Valutazione delle prestazioni in termini di efficienza, potenziale di integrazione delle fonti, emissioni di CO2. Descrizione criteri di dimensionamento di sistemi ibridi complessi.
 P. Basu, Biomass Gasification and Pyrolysis. Elsevier R. Pallabazzer, Sistemi di Conversione Eolica (Hoepli) T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook (Wiley) E. Hau, Wind Turbines (Springer) J.F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained (Wiley) R. Gasch, J. Twele, Wind Power Plants (Springer) Austin Hughes and Bill Drury. Electric Motors and Drives (Elsevier) Course powerpoint slides
|
|
Date di inizio e termine delle attività didattiche
|
- |
|
Modalità di erogazione
|
Tradizionale
|
|
Modalità di frequenza
|
Non obbligatoria
|
|
Metodi di valutazione
|
Prova orale
Valutazione di un progetto
|
|
|