| PROGETTAZIONE IMPIANTISTICA PER L�ARCHITETTURA
(obiettivi)
OBIETTIVI FORMATIVI: Acquisizione dei principi generali e di conoscenze specialistiche per formare la capacità critica necessaria per la corretta e unitaria impostazione della progettazione impiantistica in un approccio olistico al sistema edificio-impianti.
CONOSCENZA E CAPACITÀ DI COMPRENSIONE: Conoscenza delle discipline di base e della fisica tecnica. Conoscenza delle tipologie di impianti e dei loro principi di dimensionamento in base alle caratteristiche tecnologiche ed energetiche dell'involucro dell'edificio.
CAPACITÀ DI APPLICARE CONOSCENZA E COMPRENSIONE: Applicazione dei principi tecnici ed economici per la realizzazione di impianti e infrastrutture. L'allievo saprà in grado di applicarle per individuare la soluzione idonea per interventi da realizzare in funzione delle caratteristiche energetiche e ambientali del contesto.
AUTONOMIA DI GIUDIZIO: L'allievo dovrà saper attingere alle discipline di base e all'ingegneria impiantistica per sviluppare in modo autonomo la conoscenza necessaria per dimensionare gli impianti .
ABILITÀ COMUNICATIVE: L'allievo presenterà un progetto redatto in gruppo e discuterà in forma orale la soluzione di problemi affrontati durante la progettazione.
CAPACITÀ DI APPRENDIMENTO: L'allievo apprenderà metodi e modelli di calcolo rafforzando la capacità di saper applicare le discipline di base alla soluzione di problemi pratici.
|
|
Codice
|
8037617 |
|
Lingua
|
ITA |
|
Tipo di attestato
|
Attestato di profitto |
|
Crediti
|
9
|
|
Settore scientifico disciplinare
|
ING-IND/11
|
|
Ore Aula
|
90
|
|
Ore Studio
|
-
|
|
Attività formativa
|
Attività formative affini ed integrative
|
Canale Unico
|
Docente
|
SPENA ANGELO
|
|
Date di inizio e termine delle attività didattiche
|
- |
|
Modalità di frequenza
|
Non obbligatoria
|
|
Docente
|
CORNARO CRISTINA
(programma)
1. Richiami di trasmissione di caalore, di momento, di massa. Diagramma di Glaser. 2. Richiami ed elementi applicativi di elettrotecnica. Trasformatori, sistemi elettrici ed elementi di sicurezza elettrica. 3. Approfondimenti di fenomeni radiativi e convettivi.Problemi complessi di trasmissione di calore nel regime variabile. Analogia di Reynolds e moto dei fluidi. 4. Termofisica dell'edificio. Principi del benessere integrato. Clima al suolo. Compatibilità architettonica ed energetica. 5. Componenti edilizi rilevanti: sistemi finestra; materiali isolanti; componenti ibridi e integrati. Elementi di bioedilizia. Integrazione fotovoltaica e idroponica. 6. Scenario e vincoli normativi. Risparmio e certificazione energetica. Requisiti ambientali minimi. Produzione combinata di energia elettrica, calore, freddo. 7. Apparecchiature e sottosistemi impiantistici termotecnici ed elettrici. Centrali termiche. Centrali frigorifere. Prestazioni sul campo e coordinamento funzionale. Cenni sul teleriscaldamento. 8. Metodologie e procedimento di calcolo elettrico e termotecnico. Condizioni estremali di progetto e condizioni reali di funzionamento. 9. Regolazione, supervisione, telecontrollo. Criteri per la progettazione integrata. Cenni sulla direzione lavori, le misure,i collaudi. Verifiche di qualità e di sicurezza. Certificazione energetica e ruolo dell'energy manager. 10. Sviluppo di una progettazione esecutiva di impianti di condizionamento ed elettrici integrati in un grande organismo edilizio.
 A. Spena, Fondamenti di energetica, CEDAM, Padova, 1996; ASHRAE Handbook of Fundamentals, Atlanta, 2017.
|
|
Date di inizio e termine delle attività didattiche
|
- |
|
Modalità di erogazione
|
Tradizionale
|
|
Modalità di frequenza
|
Non obbligatoria
|
|
Metodi di valutazione
|
Prova scritta
Prova orale
Valutazione di un progetto
|
|
Fruisce da
|
(programma)
1. Richiami di trasmissione di caalore, di momento, di massa. Diagramma di Glaser. 2. Richiami ed elementi applicativi di elettrotecnica. Trasformatori, sistemi elettrici ed elementi di sicurezza elettrica. 3. Approfondimenti di fenomeni radiativi e convettivi.Problemi complessi di trasmissione di calore nel regime variabile. Analogia di Reynolds e moto dei fluidi. 4. Termofisica dell'edificio. Principi del benessere integrato. Clima al suolo. Compatibilità architettonica ed energetica. 5. Componenti edilizi rilevanti: sistemi finestra; materiali isolanti; componenti ibridi e integrati. Elementi di bioedilizia. Integrazione fotovoltaica e idroponica. 6. Scenario e vincoli normativi. Risparmio e certificazione energetica. Requisiti ambientali minimi. Produzione combinata di energia elettrica, calore, freddo. 7. Apparecchiature e sottosistemi impiantistici termotecnici ed elettrici. Centrali termiche. Centrali frigorifere. Prestazioni sul campo e coordinamento funzionale. Cenni sul teleriscaldamento. 8. Metodologie e procedimento di calcolo elettrico e termotecnico. Condizioni estremali di progetto e condizioni reali di funzionamento. 9. Regolazione, supervisione, telecontrollo. Criteri per la progettazione integrata. Cenni sulla direzione lavori, le misure,i collaudi. Verifiche di qualità e di sicurezza. Certificazione energetica e ruolo dell'energy manager. 10. Sviluppo di una progettazione esecutiva di impianti di condizionamento ed elettrici integrati in un grande organismo edilizio.
 A. Spena, Fondamenti di energetica, CEDAM, Padova, 1996; ASHRAE Handbook of Fundamentals, Atlanta, 2017.
|
|
Date di inizio e termine delle attività didattiche
|
- |
|
Modalità di erogazione
|
Tradizionale
|
|
Modalità di frequenza
|
Non obbligatoria
|
|
Metodi di valutazione
|
Prova scritta
Prova orale
Valutazione di un progetto
|
|
|