|
Docente
|
GIBILISCO PAOLO
(programma)
Algebra Lineare Sistemi di equazioni lineari. Algebra delle matrici. Matrici quadrate. Trasposta. Determinante. Gruppi, campi, spazi vettoriali. Indipendenza lineare e basi. Dimensione. Trasformazioni lineari. Nuclei. Prodotti scalari. Disuguaglianza di Cauchy- Schwartz. Autovalori, autovettori, polinomio caratteristico di una matrice quadrata. Proprietà degli autospazi. Matrici ortogonali e simmetriche. Matrici definite positive. Operatori di proiezione. Decomposizione di Cholesky. Matrici diagonalizzabili. Il teorema spettrale.
Probabilità Spazi di probabilità. Algebre di eventi. Calcolo combinatorio. Spazi di probabilità finiti. Introduzione agli assiomi di Kolmogorov. Probabilità condizionata, formula di Bayes. Eventi indipendenti. Variabili aleatorie. Distribuzione di probabilità e funzione di densità per variabili aleatorie. Attesa, varianza e loro proprietà. Attesa e varianza per le principali distribuzioni. Covarianza e invarianza di scala per il coefficiente di correlazione. Vettori aleatori. Distribuzione e densità per i vettori aleatori. Variabili aleatorie indipendenti, covarianza e correlazione. Attesa condizionata per variabili aleatorie e suo significato geometrico. Convergenza in probabilità e in legge. La funzione caratteristica. Legge (debole) dei grandi numeri. Teorema centrale del limite. Distribuzione gaussiana multivariata. Attesa condizionata per la gaussiana bivariata. ili. Il teorema spettrale.
 C.P. Simon and L. Blume. Mathematics for Economists. Norton & Company
G. Casella and R.L. Berger. Statistical Inference. Duxbury
A. Mas-Colell, M. D. Winston and J.R. Green. Microeconomic Theory
|