|
Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
|
8039881 -
CHARACTERIZATION OF NANO-ENGINEERING SYSTEMS
(obiettivi)
LEARNING OUTCOMES The course aims to provide students with the fundamental notions of physical and chemical characterizations of nanomaterials and nanostructures. Different analysis techniques are highlighted such as optical microscopèy, electronic and contact microscopies, optical and infrared spectroscopies, XPS, Auger, SIMS, etc. A general overview of the radiation-matter interaction is also given. Students will also acquire practical skills thanks to some laboratories that will be carried out during the course.
KNOWLEDGE AND UNDERSTANDING It is required to be able to read and understand scientific publications for dissemination or research, usually in English. To be able to connect the different topics (interrelated between them) discussed during the course. To apply theoretically and practically, the concepts acquired during the course.
APPLYING KNOWLEDGE AND UNDERSTANDING At the end of the course it is required to be able to illustrate the relevant points of the program in a concise and analytical manner with appropriate language. The use of a technical language appropriate to the subject is required. It is necessary to know how to analyze a problem / question and to know how to organize an adequate response justifying it. It is necessary to know how to reorganize and develop the experiments performed in the laboratory.
MAKING JUDGEMENTS Students will be asked to motivate the tools and methodologies used for certain scientific experiences and be able to describe them and implement them even in different forms with respect to those described during the course. They have to be able to integrate explanations also with references to everyday life and they have to be able to provide links with what described and analyzed during the lessons. They are required to be able to abstract general concepts from particular cases.
COMMUNICATION SKILLS They are required to be able to describe the topics covered during the course in a professional manner and with adequate language. They are required to be able to extract the important concepts and to illustrate them in a synthetic and punctual way by providing examples.
LEARNING SKILLS It is required to be able to read scientific texts in English. To understand graphs and scientific figures. To know how to select and correlate topics.
|
|
M-5871 -
FUNDAMENTALS OF CHARACTERIZATION OF NANO SYSTEMS (MODULE 1)
-
MILANI ENRICO
( programma)
1.Dinamica relativistica; struttura atomica e transizioni. 2. Proprietà della radiazione:Interazione radiazione-materia. 3. X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy (AES), Ultraviolet photoemission spectroscopy (UPS), electron energy loss spectroscopy (EELS): Principi e strumenti. 4. Secondary ion mass spectrometry (SIMS): Principi e strumenti. 5. Profili di spessore e immagini chimiche usando tecniche XPS, AES e SIMS. 6. Applicazioni pratiche di tecniche di analisi superfiaciali: esempi e test sperimentali in laboratorio. 7. Caratterizzazioni morfologiche: Microscopia ottica, microscopia a forza atomica (AFM), microscopia a effetto tunnel (STM), microscopia a scansione elettronica (SEM) e microscopia a trasmissione elettronica (TEM). I set up sperimentali e le tecniche di misura insieme ai principi di funzionamento base verranno illustrati e discussi. 8. Spettroscopie ottiche di nanostrutture. Verranno spiegate le principali tecniche ottiche come assorbimento, riflessione e fotoluminescenza. L'effetto delle piccole dimensioni sulle proprietà ottiche dei nanomateriali verrà descritto e spiegato. 9. Saranno svolte alcune esercitazioni pratiche in laboratorio e verranno mostrati alcuni set up sperimentali e tecniche di misura.
 J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis, Wiley, 2003; Y.-W. Chung, Practical Guide to Surface Science and Spectroscopy, Academic Press, 2001; Fundamentals of light microscopy and electronic imaging D. B. Murphy John Wiley and Sons (2001); Physical Principles of Electron Microscopy R.F. Egerton Springer (2005); Nanostructures and Nanomaterials: Synthesis, Properties and Applications G. Cao and Y. Wang World Scientific Publishing (2011)
Slide delle lezioni
|
2
|
FIS/07
|
16
|
-
|
3
|
-
|
Attività formative affini ed integrative
|
ENG |
M-5870 -
CHARACTERIZATION OF NANO-ENGINEERING SYSTEMS (MODULE 2)
-
KACIULIS SAULIUS
( programma)
1.Dinamica relativistica; struttura atomica e transizioni. 2. Proprietà della radiazione:Interazione radiazione-materia. 3. X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy (AES), Ultraviolet photoemission spectroscopy (UPS), electron energy loss spectroscopy (EELS): Principi e strumenti. 4. Secondary ion mass spectrometry (SIMS): Principi e strumenti. 5. Profili di spessore e immagini chimiche usando tecniche XPS, AES e SIMS. 6. Applicazioni pratiche di tecniche di analisi superficiali: esempi e test sperimentali in laboratorio. 7. Caratterizzazioni morfologiche: Microscopia ottica, microscopia a forza atomica (AFM), microscopia a effetto tunnel (STM), microscopia a scansione elettronica (SEM) e microscopia a trasmissione elettronica (TEM). I set up sperimentali e le tecniche di misura insieme ai principi di funzionamento base verranno illustrati e discussi. 8. Spettroscopie ottiche di nanostrutture. Verranno spiegate le principali tecniche ottiche come assorbimento, riflessione e fotoluminescenza. L'effetto delle piccole dimensioni sulle proprietà ottiche dei nanomateriali verrà descritto e spiegato. 9. Saranno svolte alcune esercitazioni pratiche in laboratorio e verranno mostrati alcuni set up sperimentali e tecniche di misura.
 J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis, Wiley, 2003; Y.-W. Chung, Practical Guide to Surface Science and Spectroscopy, Academic Press, 2001; Fundamentals of light microscopy and electronic imaging D. B. Murphy John Wiley and Sons (2001); Physical Principles of Electron Microscopy R.F. Egerton Springer (2005); Nanostructures and Nanomaterials: Synthesis, Properties and Applications G. Cao and Y. Wang World Scientific Publishing (2011)
Slide delle lezioni
-
PROSPOSITO PAOLO
( programma)
1.Dinamica relativistica; struttura atomica e transizioni. 2. Proprietà della radiazione:Interazione radiazione-materia. 3. X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy (AES), Ultraviolet photoemission spectroscopy (UPS), electron energy loss spectroscopy (EELS): Principi e strumenti. 4. Secondary ion mass spectrometry (SIMS): Principi e strumenti. 5. Profili di spessore e immagini chimiche usando tecniche XPS, AES e SIMS. 6. Applicazioni pratiche di tecniche di analisi superficiali: esempi e test sperimentali in laboratorio. 7. Caratterizzazioni morfologiche: Microscopia ottica, microscopia a forza atomica (AFM), microscopia a effetto tunnel (STM), microscopia a scansione elettronica (SEM) e microscopia a trasmissione elettronica (TEM). I set up sperimentali e le tecniche di misura insieme ai principi di funzionamento base verranno illustrati e discussi. 8. Spettroscopie ottiche di nanostrutture. Verranno spiegate le principali tecniche ottiche come assorbimento, riflessione e fotoluminescenza. L'effetto delle piccole dimensioni sulle proprietà ottiche dei nanomateriali verrà descritto e spiegato. 9. Saranno svolte alcune esercitazioni pratiche in laboratorio e verranno mostrati alcuni set up sperimentali e tecniche di misura.
 J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis, Wiley, 2003; Y.-W. Chung, Practical Guide to Surface Science and Spectroscopy, Academic Press, 2001; Fundamentals of light microscopy and electronic imaging D. B. Murphy John Wiley and Sons (2001); Physical Principles of Electron Microscopy R.F. Egerton Springer (2005); Nanostructures and Nanomaterials: Synthesis, Properties and Applications G. Cao and Y. Wang World Scientific Publishing (2011)
Slide delle lezioni
|
4
|
ING-IND/23
|
32
|
-
|
6
|
-
|
Attività formative caratterizzanti
|
ENG |
|
8039882 -
NANOSCALE SYNTHESIS METHODS
(obiettivi)
LEARNING OUTCOMES Knowledge to design the material properties starting from atomic and molecular structures. The main goal of this course is to to provide a comprehensive picture of the synthesis of inorganic and organic nanoparticles.
KNOWLEDGE AND UNDERSTANDING Ability to design the properties of materials starting from the atomic and molecular structures; Knowledge of advanced materials (polymeric, metallic, ceramic, composite and nanostructured) in terms of microstructure; Knowledge and understanding of the most modern methods of organic and inorganic synthesis applied to nano-science; Knowledge and understanding of the chemical and physical characteristics of the main materials.
APPLYING KNOWLEDGE AND UNDERSTANDING Structure property correlations for materials. Ability to select the most appropriate material for a specific application. Ability to predict the degradation of a material in relation to the environment to which it is exposed. Choice of the most suitable materials for the realization of a product in relation to its characteristics and the required application.
MAKING JUDGEMENTS The ability to obtain and describe data resulting from experiments and analysis, in order to arrive at the formulation of an interpretative judgment on the results acquired; The ability to collect and process technical and safety information, taking into account the chemical and physical properties of the material, including any specific risk.
COMMUNICATION SKILLS The international environment in which the Master will take place will result in an increase in communication skills. Teaching includes oral exams (in English) and will train students to effectively support scientific discussions by improving their skills.
LEARNING SKILLS This part of the training will be achieved through lectures supported by laboratory exercises. As part of the Master’s Degree program, the experimental laboratory activity is developed in order to provide a clear knowledge of implementation and application problems.Learning skills will be achieved throughout the course, with particular regard to the planned individual study and the activity carried out for the preparation of the final exam.
-
DI VONA MARIA LUISA
( programma)
1. Sintesi su scala nanometrica e tecniche bottom-up 2. Strumenti sintetici avanzati per l'assemblaggio covalente di elementi costitutivi nella preparazione di sistemi molecolari rilevanti in nanotecnologia 3. Nanomateriali a base di carbonio 4. Sol-gel e chimica colloidale 5. Applicazioni della chimica sol-gel 6. Materiali nanoporosi 7. Problemi di sicurezza e ambientali
 Materials for engineers, W.F. Hosford, Cambridge 2008; Nanomaterials: An Introduction to Synthesis, Properties and Applications, D. Vollath, Wiley 2nd Edition, 2013. Nanoscience and Nanomaterials: Synthesis, Manufacturing and Industry Impacts; Wei-Hong Zhong, Bin Li, Russell G. Maguire, Vivian T. Dang, Jo Anne Shatkin, Gwen M. Gross, Michael C. Richey DEStech Publications, Inc
|
5
|
CHIM/07
|
39
|
-
|
6
|
-
|
Attività formative affini ed integrative
|
ENG |
|
8039951 -
MACROMOLECULAR AND SUPRAMOLECULAR CHEMISTRY
(obiettivi)
LEARNING OUTCOMES The aim of the course is to provide the general background on polymer and colloidal and “soft” materials needed for the understanding of phenomena and processes that students will encounter during their further studies or their future working actiivty. At the end of the course concepts such as the molecular weight distributions, step and chain polymerizations and the technology aspects, polymer solutions, gels and self assembly, experimental approaches to study polymer and self assembled materials, elastomers and mechanical behaviour of polymers, will be the knowledge background of the student in order to orient himself in future research topics and work issues.
KNOWLEDGE AND UNDERSTANDING At the end of the course the student should know how to analyze the scientific literature at university level and the information contained in a laboratory report in the field of polymer and self assembly chemistry.
APPLYING KNOWLEDGE AND UNDERSTANDING At the end of the course the student should be able to understand and discuss in an organized way the logical steps in a problem solving activity in topics covered during the course, on the basis of the received concepts and information. Operative and conceptual aspects of the work and of the research will be managed in a critical and organized way.
MAKING JUDGEMENTS One of the aims of the course is to raise a critical and independent approach in the reading of a scientific journal of the field or about a laboratory report, being able to work out connections and original logical steps
COMMUNICATION SKILLS To master concepts worked out in thecourse is at the base of the ability to share such contents also in front of a not-specialized audience without loosing the logic and scientific rigor.
LEARNING SKILLS At the end of the class, the student is able to handle the studied contents in order to understand actively future issues and therefore to progress toward more specialized knowledge.
-
PARADOSSI GAIO
( programma)
Comprensione dei principali concetti della Chimica dei Polimeri e dei processi di autoassembaggio. Abilità di applicare le conoscenze elaborate durante il corso. Abilità di realizzare e comprendere gli esperimenti riguardanti polimeri e materiali autoassemblanti e di trattare dati secondo semplici modelli teorici.
 Materiale ppt fornito dal docente P. J. Flory, Introduction to Polymer Chemistry Cornell University Press. R.J. Young and P.A. Lovell Introduction to polymers CRC Editors
Ian W. Hamley Introduction to Soft Matter Wiley
|
5
|
CHIM/02
|
45
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
|
8039884 -
NANOSCALE ENERGY TECHNOLOGY, NANO-SENSORS AND MICRO-FLUIDICS
(obiettivi)
LEARNING OUTCOMES The course provides an introduction to recent application of nanotechnologies to energy and sensors. The selected examples will mainly focus on nanotechnology for solar energy (photovoltaics) and the employment of nanofluidic systems for single molecule sensing and nanoporous membrane for energy harvesting from salinity gradients (blue-energy).
KNOWLEDGE AND UNDERSTANDING For what concern the energy module, at the end of the course, the student will know the main features of a photovoltaic systems and the most modern technology for new generation photovoltaics. Concerning the nanofluidics module, the student will be able to understand the main phenomena related to the transport of mass and ions in electrolyte solutions.
APPLYING KNOWLEDGE AND UNDERSTANDING The student will be able to recognize the range of validity of the various models proposed for the description of fluids at nanoscale. The student will be able to design and characterize a new generation solar cells. She/He will also be able to apply the knowledge and understanding developed during the course to study and understand recent literature.
MAKING JUDGEMENTS The transversal preparation provided by the course implies: 1) the student’s capability to integrate knowledge and manage complexity, 2) the student ability to deal with new and emerging areas in nanotechnology application to energy and sensing and 3) an understanding of the models suited for a given context and their limitations.
COMMUNICATION SKILLS The student will be able to communicate the contents of the course to specialists in a clear and unambiguous way. It will also be able to communicate the main features of the models used and their limits to specialists in other related disciplines (example: other engineers, physicists, chemists).
LEARNING SKILLS The structure of the course contents, characterized by various topics apparently separated but connected by a multi-scale and multi-physics vision, will contribute to developing a systemic learning capacity that will allow the student to approach in a self-directed or autonomous way to other frontier problems on nanotechnology application to energy and sensing. Furthermore, the student will be able to read and understand recent scientific literature.
-
CHINAPPI MAURO
( programma)
Trasporto di ioni in nanopori Moto di ioni in una soluzione elettrolitica. Conducibilità e conduttanza. Modelli quasi-1D. Resistenza di accesso. Applicazioni per sensori a nanoporo: corrente di bloccaggio.
Micro e nano-fluidica Equazioni del moto. Conservazione della massa e quantità di moto. Condizioni al bordo. Flusso di Poiseuille. Scorrimento a parete. Elettroidrodinamica. Equazione d trasporto per le cariche. Doppio strato elettrico. Lunghezza di Debye. Energia blue: conversione di gradienti di salinità in energia elettrica.
Diffusione Descrizione Lagrangiana ed Euleriana della diffusione. Equazione di Langevin. Relazione di fluttazione-dissipazione.
Simulazioni di dinamica molecolare Equazioni del moto. Potenziali di interazione. Potenziale di Lennard-Jones. Simulazioni di biomolecole. Equilibrazione del sistema. Esperienza in laboratorio: preparazione di un sistema e simulazione usando i codici VMD e NAMD.
NanoEnergy Introduzione generale sulla domanda globale di energia e focus sull’energia solare; Introduzione al fotovoltaico: l’effetto fotovoltaico, la giunzione p-n, principali parametri elettrici caratteristici estratti dalla caratteristica Corrente-Tensione (curva I-V), tecniche di caratterizzazione per celle fotovoltaiche; Fotovoltaico di nuova generazione: dispositive ibridi e organici; Celle solari organiche;
Celle solari ibride Celle solari a sensibilizzante organico (DSCs) e moduli; Celle solari a perovskite (PSCs) e moduli; Nanomateriali e materiali bidimensionali (2D): proprietà e tecniche di caratterizzazione; Fotovoltaico a perovskite e materiali bidimensionali: efficienza di conversione fotovoltaica, stabilità e scalabilità su larga area.
 Theoretical Microfluidics, Henrik Bruus, Oxford University Press (2008) (notes of the course provided by the professors).2012.
-
AGRESTI ANTONIO
( programma)
Trasporto di ioni in nanopori Moto di ioni in una soluzione elettrolitica. Conducibilità e conduttanza. Modelli quasi-1D. Resistenza di accesso. Applicazioni per sensori a nanoporo: corrente di bloccaggio.
Micro e nano-fluidica Equazioni del moto. Conservazione della massa e quantità di moto. Condizioni al bordo. Flusso di Poiseuille. Scorrimento a parete. Elettroidrodinamica. Equazione d trasporto per le cariche. Doppio strato elettrico. Lunghezza di Debye. Energia blue: conversione di gradienti di salinità in energia elettrica.
Diffusione Descrizione Lagrangiana ed Euleriana della diffusione. Equazione di Langevin. Relazione di fluttazione-dissipazione.
Simulazioni di dinamica molecolare Equazioni del moto. Potenziali di interazione. Potenziale di Lennard-Jones. Simulazioni di biomolecole. Equilibrazione del sistema. Esperienza in laboratorio: preparazione di un sistema e simulazione usando i codici VMD e NAMD.
NanoEnergy Introduzione generale sulla domanda globale di energia e focus sull’energia solare; Introduzione al fotovoltaico: l’effetto fotovoltaico, la giunzione p-n, principali parametri elettrici caratteristici estratti dalla caratteristica Corrente-Tensione (curva I-V), tecniche di caratterizzazione per celle fotovoltaiche; Fotovoltaico di nuova generazione: dispositive ibridi e organici; Celle solari organiche;
Celle solari ibride Celle solari a sensibilizzante organico (DSCs) e moduli; Celle solari a perovskite (PSCs) e moduli; Nanomateriali e materiali bidimensionali (2D): proprietà e tecniche di caratterizzazione; Fotovoltaico a perovskite e materiali bidimensionali: efficienza di conversione fotovoltaica, stabilità e scalabilità su larga area.
 Theoretical Microfluidics, Henrik Bruus, Oxford University Press (2008) (notes of the course provided by the professors).2012.
|
5
|
ING-IND/08
|
39
|
-
|
6
|
-
|
Attività formative affini ed integrative
|
ENG |
Gruppo opzionale:
OPTIONAL COURSES: 2 exams (5 CFU). Option A "Chemistry" or option B "Modelling". Option A: STRUCTURAL AND FUNCTIONAL PROPERTIES OF BIOPOLYMERS and NMR OF NANO-SYSTEMS; Option B: NANOSCALE STRUCTURAL TRANSFORMATIONS AND KINETICS and PROBABILITY AND STATISTICAL METHODS FOR MODELLING ENGINEERS. - (visualizza)
 |
5
|
|
|
|
|
|
|
|
|
8039853 -
STRUCTURAL AND FUNCTIONAL PROPERTIES OF BIOPOLYMERS
(obiettivi)
LEARNING OUTCOMES Ability to include the main structural and functional properties of biopolymer.
KNOWLEDGE AND UNDERSTANDING Understanding of the chemical and physical principles that underlie structural motifs in biopolymers, as well as important techniques for their study.
APPLYING KNOWLEDGE AND UNDERSTANDING Ability to apply the different knowledge learned during the lessons, as well as ability to discriminate between the best strategy to follow for a study project.
MAKING JUDGEMENTS Ability to be independent in a scientific project by acquiring information from other related sectors.
COMMUNICATION SKILLS Ability in the relationship with sectors of genetics, biochemistry and molecular biology to apply for suitable experiments.
LEARNING SKILLS Ability to autonomously extend one’s own knowledge by using the suitable literature and to know how to move in sectors related to one’s own.
-
SETTE MARCO
( programma)
Caratteristiche strutturali ed equilibri conformazionali di polipeptidi, proteine, polisaccaridi e acidi nucleici. Interazioni biopolimero-ligando: aspetti termodinamici e cinetici. Biopolimeri per la sintesi di polimeri. Sistemi auto assemblati di biopolimeri: idrogel e micro gel. Polimeri sintetici con applicazioni in ambiente biologico. Visualizzazione e manipolazione di strutture di biopolimeri mediante computer.
 Appunti e presentazione ppt fornite dal docente
|
3
|
CHIM/07
|
23
|
-
|
4
|
-
|
Attività formative affini ed integrative
|
ENG |
|
8039854 -
NMR OF NANO-SYSTEMS
(obiettivi)
LEARNING OUTCOMES Ability to understand the relevant scientific literature and to extract information from spectra of Nuclear Magnetic Resonance.
KNOWLEDGE AND UNDERSTANDING Understanding of the necessary NMR experiments of utility in the field of nanosystems and of the basic theory behind each of them.
APPLYING KNOWLEDGE AND UNDERSTANDING Ability to apply the different methodologies used during the lesson, as well as the ability to discriminate between the best strategy to follow.
MAKING JUDGEMENTS Ability to be independent in a scientific project by acquiring information deriving from other related sectors.
COMMUNICATION SKILLS Ability to relate to other sectors to establish appropriate experiments
LEARNING SKILLS Ability to extend their own knowledge for the use of other experiments and to know how to move in sectors related to their own.
-
SETTE MARCO
( programma)
Teoria di base NMR: fenomeno di risonanza, chemical shift, accoppiamento scalare e dipolare, interazioni molecolari. Esperimenti mono- e bidimensionali in soluzione ed in fase solida. Esperimenti di diffusione. Esempi dalla letteratura
 Edwin Becker High Resolution NMR. Theory and Chemical Applications Elsevier. 3rd Edition
|
2
|
BIO/10
|
15
|
-
|
3
|
-
|
Attività formative affini ed integrative
|
ENG |
|
8039855 -
NANOSCALE STRUCTURAL TRANSFORMATIONS AND KINETICS
(obiettivi)
LEARNING OUTCOMES The course aims to provide the basic knowledge about the diffusion based phase transformation occurring in the solid state with particular attention to thermodynamics and kinetics. The chemical distribution on nano- and micro-scale and the microstructure of materials will be presented.
KNOWLEDGE AND UNDERSTANDING The students should understand how the microstructure of metallic materials can be modified through heat treatments which induce the formation of different phases.
APPLYING KNOWLEDGE AND UNDERSTANDING The content of the course is useful for determining the fundamental process parameters (temperature, time, atmosphere) of heat treatments to induce the suitable microstructural transformations in metal alloys and achieve the desired mechanical properties for a given engineering application.
MAKING JUDGEMENTS The students will be able to understand how to perform the right heat treatments on metal alloys to get the desired mechanical properties.
COMMUNICATION SKILLS Description of the microstructure of metallic materials in terms of type and fraction of different phases, and their effect on the mechanical properties.
LEARNING SKILLS Understanding the relations between microstructural features and mechanical properties of the main families of metal alloys for engineering applications.
-
MONTANARI ROBERTO
( programma)
1. Diagrammi di fase binari e ternari 2. Classificazione delle trasformazioni di fase allo stato solido diffusive. 3. Trasformazioni con meccanismi di nucleazione e crescita. 4. Trasformazioni che hanno luogo attraverso la reazione spinodale. 5. Identificazione di composti ignoti mediante la diffrazione dei raggi X. L' utilizzo del database dei raggi X. Esercizi di laboratorio.
 D.R. Askeland, The Science and Engineering of Materials, Stanley Thornes Publishers Ltd
|
2
|
FIS/03
|
15
|
-
|
3
|
-
|
Attività formative affini ed integrative
|
ENG |
|
8039883 -
PROBABILITY AND STATISTICAL METHODS FOR MODELLING ENGINEERS
(obiettivi)
LEARNING OUTCOMES After a careful study during the course the students should be able to: 1. Identify the role of statistics in engineering problems. 2. Discuss the methods used by engineers to collect data. 3. Explain the differences between mechanistic and empirical models. 4. Understand and describe sample spaces and events of random experiments with graphs, tables, lists or tree diagrams. 5. Interpret and use the probability of the results to calculate the probabilities of the events. Calculate the probability of joint events and interpret / calculate the conditional probabilities of events. 6. Apply the Bayes theorem. 7. Understand the meanings of a random variable. 8. Select an appropriate discrete / continuous probability distribution. Determine probability, mean, and variance for the presented discrete / continuous probability distributions. 9. Calculate and interpret mean, variance, standard deviation, median and sample interval. 10. Build and interpret normal probability diagrams. 11. Know the general concepts of estimating the parameters of a population or a probability distribution. 12. Explain the properties of point estimators (bias, variance, mean square error). 13. Construct point estimators with moments method and maximum likelihood method. 14. Calculate and explain the precision of the estimation of a parameter. 15. Understand the central limit theorem. 16. Explain the role of normal distribution as a sampling distribution. 17. Build confidence intervals, forecast intervals, tolerance intervals. 18. Structure engineering decision problems as hypothesis tests. 19. Check the hypotheses on the average of a normal distribution using a Z-test or t-test procedure. 20. Test the hypotheses on variance or standard deviation of a normal distribution. Check the hypotheses on a population. 21. Use the P value approach to make decisions in hypothesis tests. 22. Select a sample size for tests on averages, variances and proportions. 23. Explain and use the relationship between confidence intervals and hypothesis testing. 24. Use the chi-square test to test hypotheses about the distribution. 25. Use simple linear regression to build empirical models of technical and scientific data. 26. Understand the use of the least squares method to estimate parameters in a linear regression model. 27. Analyze the residuals to determine if the regression model fits the data or to see if there are violations of the initial hypotheses. 28. Test the statistical hypotheses and construct confidence intervals on the parameters of the regression model. 29. Use the regression model for the prediction of a future observation and construct an appropriate prediction interval on future observation. 30. Use simple transformations to obtain a linear regression model. 31. Apply the correlation model. 32. Finally, discuss how probabilities and probability models are used in engineering and science in general.
KNOWLEDGE AND UNDERSTANDING Students acquire understanding and knowledge of: 1) fundamental statistical techniques (summary statistics, normal distribution, interval estimation, regression analysis, modelling) and how they relate to the baseline discipline; 2) software statistical techniques; 3) process monitoring by control charts; 4) process optimization by response surface methodology; 5) determining important factors by hypothesis testing; 6) process modelling by, e.g., regression analysis; 7) design of experiments and laboratory recommendation. The teaching approach provides the foundation for this understanding, in such a way that at the end of the course students have assimilated a complete knowledge of the basic themes.
APPLYING KNOWLEDGE AND UNDERSTANDING The goals of the course are to help the students to: i) model and simulate basic engineering problems, ii) collect, analyze and present numerical data in general and simulation results in particular, iii) interpret simulation results by means of statistical methods, iv) use statistical principles and concepts, v) develop software for reporting and for graphical presentation, vi) be familiar with basic probability theory and perform estimation, hypothesis testing, simple correlation-/regression analysis, vii) identify, formulate, and solve engineering problems. Such applications of statistics are widespread in all branches of engineering.
MAKING JUDGEMENTS The training provided for students of the course is hallmarked by the acquisition of a flexible mentality that helps them to extend the knowledge learned to new concepts, enabling them to introduce elements of innovation. These activities encourage students to develop: critical thinking and problem solving; critical analysis; independence of judgement. At the end of the course, students are therefore able to pose, refine and evaluate scientific questions, this being a fundamental objective both educational and cognitive.
COMMUNICATION SKILLS Students develop the ability to present clearly what they have learned during the course and, in the same way, the additional knowledge gained from practical exercises, classroom exercises and textbooks. They are expected to present their knowledge effectively. These skills, which concern both oral and written presentations, are based on the ability to analyze and integrate the knowledge areas acquired during the course. Students are also encouraged to develop a positive attitude towards teamwork. The evaluation of the achievement of written and oral communication skills is verified during classroom exercises, practical exercises, tutoring and through written and oral exams at the end of the course.
LEARNING SKILLS Students, through the introduction of a range of fundamental statistical techniques, learn how to: analyse data, apply statistics in engineering contexts, use appropriate statistical sofware. Furthermore they acquire: numeracy skills, effective Information retrieval and research skills, computer literacy. On these bases they will be able to connect and relate knowledge across various scales, concepts, and representations “in” and “across” domains.
-
RICHETTA MARIA
( programma)
- Il ruolo della Statistica in Ingegneria: modelli meccanicistici ed empirici, modelli di probabilità e probabilità. - Probabilità: variabili casuali discrete e distribuzioni di probabilità; variabili casuali continue e distribuzioni di probabilità. - Stima puntuale dei parametri. - Campionamento casuale e descrizione dei dati, intervalli statistici per un singolo campione. - Test di ipotesi per un singolo campione. - Regressione lineare semplice e correlazione: modelli empirici. - Modello di regressione lineare multipla. - L'analisi della varianza (ANOVA): analisi residua e controllo del modello; il modello casuale. - Progettazione di esperimenti con diversi fattori. - Controllo statistico della qualità.
 – Statistics for Engineers and Scientists, W.Navidi, McGraw-Hill Education 2020. – Fundamentals of Probability and Statistics for Engineers, T.T. Soong, Jhon Wiley & Sons 2004. – Probability and Statistics for Engineering and the Sciences, J. Devore, Brooks/Cole 2010. – Probability and Statistics; John J. Schiller, R. Alu Srinivasan, Murray R Spiegel, 4 th Edition 2013. – Essential Matlab for Engineers and Scientists; Brian Hahn, 5 th Edition 2012.
|
3
|
FIS/01
|
23
|
-
|
4
|
-
|
Attività formative affini ed integrative
|
ENG |
|
|
- -
OPTIONAL COURSES
|
4
|
|
36
|
-
|
-
|
-
|
Attività formative a scelta dello studente (art.10, comma 5, lettera a)
|
ENG |